EngQuest

Home > For Students > Primary students > About engineering > What are simple machines?

What are simple machines? - primary

Here you will discover all sorts of awesome things about simple machines and how they work. There are some great diagrams too!

A machine is something that makes it easier for us to do work, such as moving objects. Simple machines are ones which have only one part to do the work. One example of a simple machine is a lever (see Diagram 1).

Diagram 1 - example of a simple machine

More complicated machines (sometimes called Compound Machines) are made up of a number of simple machines that work together to help do the work. A wheelbarrow is one example of a compound machine because it has levers (handles) and a wheel (see Diagram 2).

Diagram 2 - example of a compound machine

Load, effort and mechanical advantage

The load is the object that is moved. In Diagram 1, the load is the weight of the rock.

The effort is the force that is used to do the work. In Diagram 1, the effort is the force that the person applies to the crowbar to move the rock.

You can use a simple machine to move a large load with a smaller effort than you would need if you did not have a machine to help you. This is called gaining a mechanical advantage.

Types of simple machines

There are a number of different types of simple machines. These include:

  • Inclined planes
Image of an inclined plane
  • Levers
Image of a lever
  • Pulleys
Image of a pulley
  • Wheels and axles
Image of a wheel and axle
  • Wedges
Image of a wedge
  • Screws
Image of a screw
  • Gears
Image of a gear

Compound machines are made up of a combination of these simple machines. Can you identify all the simple machines in the Simple Machines Animation?

Inclined planes

An inclined plane is a flat surface that is at an angle to the load. This type of 'machine' has no parts that move.

An example of an inclined plane is a ramp for wheelchairs (see Diagram 3). The inclined plane of the ramp makes it easier for the person in the wheelchair to move up into a building.

The steeper the slope of the inclined plane, the more effort it takes to move the person in the wheelchair up the slope.

Diagram 3 - an example of an inclined plane

Some other examples of inclined planes include:

  • roads leading up slopes
  • car ramps in parking stations
  • staircases for people to walk up and down.

You will agree that it is easier to walk up a ramp or a staircase than to climb to the same height up a ladder.

How many examples of inclined planes did you find in the Simple Machines Animation?

Levers

A lever is a rigid bar that rotates around a fixed point. This balancing point is called the fulcrum. A lever uses a force (or effort) to make the load move.

There are different types of levers, depending on where the load, the effort, and the fulcrum (balancing point) are positioned. For this reason, levers are classified into 3 separate groups: Class 1, Class 2, and Class 3.

  • Class 1 lever: This is where the fulcrum is between the load and the effort.

    One example would be using a screwdriver to open a can of paint (see Diagram 4). In this case, the screwdriver is the lever.

    Imagine how much harder it would be if you had to lift the lid off a paint can with your fingers, without the help of a lever!

    Pushing down on the lever (the screwdriver) raises the load (the paint can lid).

    Diagram 4 - an example of a screwdriver as a lever

    Other examples of Class 1 levers include:

    • using a bottle opener to open a bottle of drink
    • using a claw hammer to pull out a nail
    • playing on a see-saw.
  • Class 2 lever: This is where the fulcrum is at one end of the lever, the effort is at the other end, and the load is in between.

    One example would be a person lifting a load in a wheelbarrow (see Diagram 5). In this case, the wheelbarrow and its handles are the lever, the load is the weight in the wheelbarrow, and the force applied by the person lifting the handles is the effort. The fulcrum (the balance point of the lever) is the axle of the wheelbarrow.

    Diagram 5 - an example of a wheelbarrow as a lever

    Other examples of Class 2 levers include:

    • staplers that staple sheets of paper together
    • nutcrackers that have the hinge at the end of the machine.
  • Class 3 lever: This is where the fulcrum is at one end of the lever, the load is at the other end, and the effort is in between. These levers involve using a large effort to move a small load a long distance.

    An example is a person playing golf (see Diagram 6). In this case the golf club plus the person's arms is the lever, the golfer's shoulder is the fulcrum, the force being applied to the golf club by the golfer's hands is the effort, and the load is the weight of the golf ball.

    Diagram 6 - an example of a lever in playing golf

    Other examples of Class 3 levers include:

    • using a cricket bat, a tennis racquet or a hockey stick to hit a ball
    • using a fishing rod to cast a fishing line.

    There are many levers in the Simple Machines Animation. How many can you spot?

Levers in balance

A see-saw is actually a lever with a fulcrum (balancing point) in the middle (see Diagram 7). Think about a see-saw with two people sitting at different distances from the fulcrum. If one person is twice as heavy as the other, the lighter person must sit further away from the fulcrum than the heavier person for the see-saw to be balanced.

Once balanced, it requires very little force for each person to push the see-saw up and down with their legs.

Diagram 7 - an example of levers in balance

Wheels and axles

A wheel and axle is a simple machine that is made up of a smaller cylinder (the axle) joined to a larger cylinder (the wheel).

Often a wheel and axle is used to make it much easier to move a load. An example of this is a trolley, or any other wheeled vehicle (see Diagram 8). You will agree that it would be much easier to move a heavy load across the ground with a trolley that does have wheels rather than with a trolley that does not have wheels.

Diagram 8 - an example of wheels and axles

There are two examples of wheels and axles in the Simple Machines Animation. See if you can find them.

Pulleys

A pulley consists of a rope (or a belt or chain) that passes around a wheel.

Fixed pulleys

An example of a fixed pulley would be a pulley at the top of a flagpole (see Diagram 9). Because of the pulley at the top, the person raising the flag can stand on the ground and hoist the flag by pulling down on the rope. Imagine how much harder it would be without a pulley - the person would need to climb up the flagpole with the flag!

Diagram 9 - an example of a fixed pulley

Other examples of fixed pulleys include:

  • the pulley at the top of a yacht mast. The deckhand can raise the sail up the mast by pulling down on the rope.

  • the pulley at the end of the boom of a crane. The crane works by pulling upwards to lift the load.

Did you spot the two examples of pulleys in the Simple Machines Animation?

Moving pulleys

Diagram 10 shows one moving pulley attached to the engine (the load), and one fixed pulley attached to the support above. This type of pulley system is called a 'block and tackle', where 'block' refers to the pulleys and 'tackle' is the chain that the person is pulling to lift the engine.

Diagram 10 - an example of a moving pulley

Wedges

A good example of a wedge is an axe, where the head of the axe is made up of two inclined planes which do the work.

Think about an axe being used to chop and split a piece of firewood (see Diagram 11). The axe is actually being used to change the direction of the force. The force of the axe blow is downwards, but the wedge changes this downward force into two sideways forces, causing the wood to split apart.

Diagram 11 - an example of a wedge

Other examples of wedges include:

  • a knife blade

  • a chisel used in woodworking

  • the point at the end of a nail

  • a doorstop that is wedged under a door to prevent it from moving.

Did you spot the wedge used in the Simple Machines Animation?

Screws

A screw is really an inclined plane that is coiled around a shaft (see Diagram 12).

Diagram 12 - an example of screws

Some examples of screws include:

  • wood screws

  • the screw in a car jack

  • the screw on the lid of a jar

  • the blades of a fan

  • the blades of an aeroplane propeller.

Did you notice the screw in the Simple Machines Animation?

Gears

Gears are toothed wheels that fit together so that when one gear turns it also turns the other gear. Sometimes the gears fit directly together, and sometimes they work together through a chain or a belt (see Diagram 13).

Diagram 13 - an example of gears

Look at the animated gears. The big one has 40 teeth, and the small one has 20 teeth. Suppose that the big gear is being used to drive the small gear. Each time the big gear rotates once, it uses all its 40 teeth. The small gear has only 20 teeth, so it is rotated twice. This is producing a gain in distance.

On the other hand, suppose that the small gear is being used to drive the big gear. In this case, the small gear will need to rotate twice in order to turn the big gear around once. This is producing a gain in force.

Gears

Click on the gears to see them work.

Some examples of the use of gears include:

  • mechanical clocks

  • car gearbox and drive systems

  • electric drills

  • VCR, CD and DVD players.

Did you notice how gears were used in the Simple Machines Animation? How many examples could you find?